Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yong-Shu Li, Xian-Rui Liang, Wen Feng and Wei-Ke Su*

College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: suweike@hotmail.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.034$
$w R$ factor $=0.092$
Data-to-parameter ratio $=13.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

S-Phenyl 3-methanesulfonyl-2-oxoimidazol-idine-1-carbothioate

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$, the five atoms of the imidazolidine ring are nearly coplanar, the average deviation being $0.0207 \AA$. This ring makes a dihedral angle of 44.77 (5) ${ }^{\circ}$ with the plane of the phenyl ring. The crystal structure is stabilized by three kinds of intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Thiol esters are important intermediates in organic synthesis and have been used, for example, as mild acyl transfer reagents (Mukaiyama et al., 1973), as intermediates in the synthesis of ketones (McGarvey et al., 1986) and in asymmetric aldol reactions (Kobayashi et al., 1991). Thiol esters also constitute an important group of natural products (Halcomb et al., 1995). Many show physiological activity and are widely applied in medicines and pesticides; examples include Timobensone, which is a corticoid antibiotic, and compounds such as 2-phenyl-1-ethyl (2S)-1-(3,3-dimethyl-1,2-dioxopentyl)-2pyrrolidinecarbothioate, used for the treatment of Parkinsonism (Hamiton \& Li, 1999). The syntheses of the title compound, (I), and its derivatives have been reported (Su et al., 2002). To extend this research, we report here the crystal structure of (I).

(I)

In (I), the r.m.s. deviation of the phenyl ring from planarity is $0.007 \AA$, which indicates that atom S 2 has little influence on phenyl ring planarity. The S2-C5 bond length is 1.777 (18) \AA, similar to that found in triphenyltin thiobenzoate (Yin et al.,

The molecular structure of (I), with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.

Received 8 July 2004 Accepted 15 July 2004 Online 24 July 2004
2003), where the $\mathrm{S}-\mathrm{C}$ bond length is 1.769 (9) \AA. Moreover, the five atoms ($\mathrm{N} 1, \mathrm{C} 2, \mathrm{~N} 2, \mathrm{C} 3$ and C 4) of the imidazolidine ring are nearly coplanar, with an r.m.s. deviation of $0.021 \AA$. The dihedral angle between the imidazolidine and phenyl rings is $40.77(5)^{\circ}$. In the crystal structure, there are three intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), resulting in the formation of a three-dimensional network structure (Fig. 2).

Experimental

The title compound was synthesized by the reaction of 3-methane-sulfonyl-2-oxoimidazolidine-1-carbonyl chloride ($2.27 \mathrm{~g}, 0.01 \mathrm{~mol}$) and benzenethiol ($1.0 \mathrm{~g}, 0.01 \mathrm{~mol}$) in the presence of toluene (20 ml) with active Zn powder as catalyst $(0.65 \mathrm{~g})$. The reaction was carried out under reflux for 6 h . Single crystals were obtained by recrystallization from tetrahydrofuran.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$
$M_{r}=300.35$
Monoclinic, $P 2_{\mathrm{d}} / n$
$a=6.2189$ (2) A
$b=16.0064$ (6) \AA
$c=12.9780$ (4) \AA
$\beta=93.967$ (1) ${ }^{\circ}$
$V=1288.76(8) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEX areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.852, T_{\text {max }}=0.898$
6730 measured reflections
$D_{x}=1.548 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3802 reflections
$\theta=2.5-25.2^{\circ}$
$\mu=0.42 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colorless
$0.39 \times 0.36 \times 0.26 \mathrm{~mm}$

2331 independent reflections
2080 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-7 \rightarrow 7$
$k=-19 \rightarrow 11$
$l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0476 P)^{2} \\
&+0.4005 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 2
The three-dimensional network of (I). H bonds are indicated by dashed lines.

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O}^{\mathrm{i}}$	0.97	2.59	$3.247(2)$	125
$\mathrm{C} 4-\mathrm{H} 4 B \cdots \mathrm{OB}^{\mathrm{i}}$	0.97	2.56	$3.244(2)$	128
$\mathrm{C}^{2}-\mathrm{H} 9 \cdots \mathrm{O}^{\text {ii }}$		0.93	2.51	$3.240(2)$

Symmetry codes: (i) $1+x, y, z$; (ii) $x, y, z-1$.

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{Cs} p^{2}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}=1.2 U_{\text {eq }}$ (parent atom), and Csp $p^{3}-\mathrm{H}=0.96$ or $0.97 \AA$ and $U_{\text {iso }}=1.5 U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 2002); software used to prepare material for publication: SHELXL97.

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and $X P$. Bruker AXS Inc., Madison, Winsconsin, USA.
Halcomb, R. L., Boyer, S. H., Wittman, M. D., Olson, S. H., Denhart, D. J., Liu, K. K. C. \& Danishefsky, S. J. (1995). J. Am. Chem. Soc. 117, 5720-5749. Hamiton, C. S. \& Li, J.-H. (1999). US Patent No. 5990131.
Kobayashi, S., Uchiro, H., Fujishita, Y., Shiina, I. \& Mukaiyama, T. (1991). J. Am. Chem. Soc. 113, 4247-4252.
McGarvey, G. J., Williams, J. M., Hiner, R. N., Matsubara, Y. \& Oh, T. (1986). J. Am. Chem. Soc. 108, 4943-4952.
Mukaiyama, T., Araki, M. \& Takei, H. (1973). J. Am. Chem. Soc. 95, 47634765.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Su, W. K., Gao, N., Zhang, Y. M. \& Zhu, J. F. (2002). J. Chem. Res. (S), pp. 442443.

Yin, H., Ma, C. \& Liu, G. (2003). Chin. J. Org. Chem. 23, 1013-1016.

